
7 Additional Problems and Material

This supplemental chapter contains questions, definitions, and theorems related
to previous ones, and it also contains new material.

7.1 Additional Material for Chapter 1

Example 7.1.

Let X denote the set of all lines in R2 that pass through the origin.
Topologize X in a meaningful way – i.e. using neither the discrete or
trivial topologies.

Example 7.2.

Let X denote the set of all lines in R3 that pass through the origin.
Topologize X in a meaningful way – i.e. using neither the discrete or
trivial topologies.

Example 7.3.

Let X denote the set of all (n − 1)-dimensional vector subspaces of Rn.
Topologize X in a meaningful way – i.e. using neither the discrete or
trivial topologies.

Definition A metric or distance function on a set X is a function d : X×X →
R satisfying the following properties:

• ∀x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

• ∀x, y ∈ X, d(x, y) = d(y, x)

• ∀x, y, z ∈ X, d(x, z) + d(y, z) ≤ d(x, y)

A set X equipped with a metric d is referred to as a metric space.

Theorem 7.4. Let (X, d) be a metric space. Then the sets

N(x, ε) = {y ∈ X : d(x, y) < ε}

can be used as a basis for a topology on X (here x ∈ X and ε ∈ R is positive).

Proof.

Prove the theorem
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Example 7.5.

Let X be any set. Find a metric d so that the basis from Theorem 7.4
induces the discrete topology on X, or explain why no such metric exists.
Do the same for the trivial topology on X.

Example 7.6.

Recall that the circle (or “1-sphere”) is the space

S1 =
{

(x, y) ∈ R2 : x2 + y2 = 1
}

equipped with the subspace topology of E2. Similarly, the “n-sphere” is
the space

Sn =
{
~x ∈ Rn+1 : ||~x||2 = 1

}
equipped with the subspace topology in En+1. Draw pictures of S1 and
S2 and indicate at least one, proper open subset in each space. Describe
how one might visualize S3.

Theorem 7.7. (Pasquale’s Theorem) A space X has the discrete topology ⇐⇒
∀x ∈ X the singleton {x} is open.

Proof.

Prove or disprove.

Theorem 7.8. Suppose Y is a subspace of X. Then a set C ⊆ Y is closed
⇐⇒ C = K ∩ Y where K is clsoed in X.

Proof.

Prove or disprove.

Example 7.9. Let X be a set and define

T = {S ⊆ X : Sc is countable } ∪ {∅}.

Prove that {X, T } is a topological space. This topology is called the cocountable
or countable complement topology, and when X = R is equipped with it, we
will use the symbol C1.

7.2 Additional Material for Chapter 2

Theorem 7.10. Suppose f, g are continuous functions from En to E1. Prove
that p(~x) = f(~x) · g(~x) is also continuous. Prove that f(~x) ± g(~x) is also con-
tinuous.
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Proof.

Prove the theorem. Is this result true if one uses other topologies on R?

Example 7.11.

Consider the function D : R4 → R given by D(a, b, c, d) = ad− bc. With
respect to the Euclidean topologies for both R4 and R, prove that D is
continuous.

Example 7.12.

Let GL2(R) denote the set of all invertible 2 × 2 matrices. Topologize
GL2(R) in a meaningful way – i.e. using neither the discrete or trivial
topologies.

Definition An embedding is a map f : X → Y that is a homeomorphism onto
its image; i.e. a map for which X ≈ f(X). Here we regard the subset f(X) ⊆ Y
as being equipped with the subspace topology.

Example 7.13.

Let Sn denote the n-sphere (as defined in the previous subsection), and
let k < m be natural numbers. Find an embedding f : Sk → Sm, and
prove your function is an embedding.

Example 7.14.

Find an embedding f : Rn → Sn.

Example 7.15.

Let SO(2) denote the set of matrices A ∈ GL2(R) satisfying detA = 1
and AAT = I. Explain how SO(2) ≈ S1, where SO(2) is equipped with
the subspace topology from the topology defined in 7.9. Can you prove
that these two spaces are homeomorphic? Is it true that SO(3) ≈ S2?
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7.3 Additional Material for Chapter 3

Theorem 7.16. C1 is connected.

Proof.

Prove or disprove.

Theorem 7.17. C1 is Hausdorff.

Proof.

Prove or disprove.

Definition A sequence of points {xn ∈ X : n ∈ N} in a topological space X is
said to converge to the point x ∈ X if for every open set U ⊆ X which contains
x, there exists N ∈ N such that {xn : n ≥ N} ⊆ U.

Example 7.18.

Let X be a trivial topological space. Explain why / prove every sequence
converges to every point x ∈ X.

Example 7.19.

Let X = F1 and consider the sequence {n : n ∈ N}. To which points,
if any, does this sequence converge? Determine all (other?) divergent
sequences.

Theorem 7.20. Let X be a Hausdorff space. If the sequence {xn} converges
to x and y, then ...

Proof.

Complete and prove the theorem.

Theorem 7.21. State the converse to the above theorem.

Proof.

Prove or disprove.

Definition A space X is said to be locally compact if for every point x ∈ X
there exists a compact, open set U that contains x.

Theorem 7.22. Every compact space is a locally compact space.

Proof.

Prove or disprove, but oh my god, if you disprove it then go away.

Example 7.23. Explain why Q, endowed with the subspace topology from E, is
not locally compact.
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Theorem 7.24. All open and closed subsets of a locally compact, Hausdorff
space X are locally compact.

Proof.

Prove or disprove.

Definition A compactification of a topological space X is a topological space
Y that contains X as a subspace

Definition Suppose X is a topological space with topology T . Let ∞ denote
some abstract point that is not in X, and let X̂ = X ∪ {∞}. Define a topology
T̂ on X̂ by declaring U ⊆ X̂ to be open if either

1. ∞ /∈ U and U ∈ TX or

2. ∞ ∈ U and X − U is a closed, compact subset of X.

The new space {X̂, T̂ } is called the one point compactification of X.

Theorem 7.25. {X̂, T̂ } is a topological space.

Proof.

Prove.

Theorem 7.26. Endow X with the subspace topology it inherits from X . This
topology coincides with the original topology T on X.

Proof.

Do the opposite of disprove.

Theorem 7.27. Given any space X, the one point compactification X̂ is com-
pact.

Proof.

Prove.
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