7 Additional Problems and Material

This supplemental chapter contains questions, definitions, and theorems related to previous ones, and it also contains new material.

7.1 Additional Material for Chapter 1

Example 7.1.

Let X denote the set of all lines in \mathbb{R}^2 that pass through the origin. Topologize X in a meaningful way – i.e. using neither the discrete or trivial topologies.

Example 7.2.

Let X denote the set of all lines in \mathbb{R}^3 that pass through the origin. Topologize X in a meaningful way – i.e. using neither the discrete or trivial topologies.

Example 7.3.

Let X denote the set of all $(n-1)$ -dimensional vector subspaces of \mathbb{R}^n . Topologize X in a meaningful way – i.e. using neither the discrete or trivial topologies.

Definition A metric or distance function on a set X is a function $d: X \times X \rightarrow$ R satisfying the following properties:

- $\forall x, y \in X, d(x, y) \geq 0$ and $d(x, y) = 0 \iff x = y$.
- $\forall x, y \in X, d(x, y) = d(y, x)$
- $\forall x, y, z \in X, d(x, z) + d(y, z) \leq d(x, y)$

A set X equipped with a metric d is referred to as a metric space.

Theorem 7.4. Let (X,d) be a metric space. Then the sets

$$
N(x,\epsilon) = \{ y \in X : d(x,y) < \epsilon \}
$$

can be used as a basis for a topology on X (here $x \in X$ and $\epsilon \in \mathbb{R}$ is positive).

Proof.

 \Box Prove the theorem

Example 7.5.

Let X be any set. Find a metric d so that the basis from Theorem 7.4 induces the discrete topology on X , or explain why no such metric exists. Do the same for the trivial topology on X .

Example 7.6.

Recall that the circle (or "1-sphere") is the space

$$
S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}
$$

equipped with the subspace topology of \mathbb{E}^2 . Similarly, the "*n*-sphere" is the space

$$
S^n = \{ \vec{x} \in \mathbb{R}^{n+1} : ||\vec{x}||^2 = 1 \}
$$

equipped with the subspace topology in \mathbb{E}^{n+1} . Draw pictures of S^1 and $S²$ and indicate at least one, proper open subset in each space. Describe how one might visualize S^3 .

Theorem 7.7. (Pasquale's Theorem) A space X has the discrete topology \iff $\forall x \in X$ the singleton $\{x\}$ is open.

Proof. Prove or disprove.

 \Box

Theorem 7.8. Suppose Y is a subspace of X. Then a set $C \subseteq Y$ is closed $\iff C = K \cap Y$ where K is clsoed in X.

Proof. Prove or disprove.

 \Box

Example 7.9. Let X be a set and define

 $\mathcal{T} = \{ S \subseteq X : S^c \text{ is countable } \} \cup \{ \emptyset \}.$

Prove that $\{X, \mathcal{T}\}\$ is a topological space. This topology is called the *cocountable* or *countable complement* topology, and when $X = \mathbb{R}$ is equipped with it, we will use the symbol \mathbb{C}^1 .

7.2 Additional Material for Chapter 2

Theorem 7.10. Suppose f, g are continuous functions from \mathbb{E}^n to \mathbb{E}^1 . Prove that $p(\vec{x}) = f(\vec{x}) \cdot g(\vec{x})$ is also continuous. Prove that $f(\vec{x}) \pm g(\vec{x})$ is also continuous.

Proof.

Prove the theorem. Is this result true if one uses *other* topologies on \mathbb{R}^2 ?

 \Box

Example 7.11.

Consider the function $D : \mathbb{R}^4 \to \mathbb{R}$ given by $D(a, b, c, d) = ad - bc$. With respect to the Euclidean topologies for both \mathbb{R}^4 and \mathbb{R} , prove that D is continuous.

Example 7.12.

Let $GL_2(\mathbb{R})$ denote the set of all invertible 2×2 matrices. Topologize $GL_2(\mathbb{R})$ in a meaningful way – i.e. using neither the discrete or trivial topologies.

Definition An *embedding* is a map $f : X \to Y$ that is a homeomorphism onto its image; i.e. a map for which $X \approx f(X)$. Here we regard the subset $f(X) \subseteq Y$ as being equipped with the subspace topology.

Example 7.13.

Let $Sⁿ$ denote the *n*-sphere (as defined in the previous subsection), and let $k < m$ be natural numbers. Find an embedding $f: S^k \to S^m$, and prove your function is an embedding.

Example 7.14.

Find an embedding $f : \mathbb{R}^n \to S^n$.

Example 7.15.

Let $SO(2)$ denote the set of matrices $A \in GL_2(\mathbb{R})$ satisfying det $A = 1$ and $AA^T = I$. Explain how $SO(2) \approx S^1$, where $SO(2)$ is equipped with the subspace topology from the topology defined in 7.9. Can you prove that these two spaces are homeomorphic? Is it true that $SO(3) \approx S^2$?

7.3 Additional Material for Chapter 3

Theorem 7.16. C^1 is connected.

Proof. Prove or disprove.

Theorem 7.17. C^1 is Hausdorff.

Proof.

Prove or disprove.

 \Box

 \Box

Definition A sequence of points $\{x_n \in X : n \in \mathbb{N}\}\$ in a topological space X is said to converge to the point $x \in X$ if for every open set $U \subseteq X$ which contains x, there exists $N \in \mathbb{N}$ such that $\{x_n : n \geq N\} \subseteq U$.

Example 7.18.

Let X be a trivial topological space. Explain why $/$ prove every sequence converges to *every* point $x \in X$.

Example 7.19.

Let $X = \mathbf{F}^1$ and consider the sequence $\{n : n \in \mathbb{N}\}\$. To which points, if any, does this sequence converge? Determine all (other?) divergent sequences.

Theorem 7.20. Let X be a Hausdorff space. If the sequence $\{x_n\}$ converges to x and y, then ...

Proof. Complete and prove the theorem. \Box

Theorem 7.21. State the converse to the above theorem.

Proof.

Prove or disprove.

Definition A space X is said to be *locally compact* if for every point $x \in X$ there exists a compact, open set U that contains x .

Theorem 7.22. Every compact space is a locally compact space.

Proof.

Prove or disprove, but oh my god, if you disprove it then go away.

 \Box

 \Box

Example 7.23. Explain why \mathbb{Q} , endowed with the subspace topology from \mathbb{E} , is not locally compact.

Theorem 7.24. All open and closed subsets of a locally compact, Hausdorff space X are locally compact.

Proof. Prove or disprove. \Box

Definition A *compactification* of a topological space X is a topological space Y that contains X as a subspace

Definition Suppose X is a topological space with topology \mathcal{T} . Let ∞ denote some abstract point that is not in X, and let $\hat{X} = X \cup \{\infty\}$. Define a topology $\hat{\mathcal{T}}$ on \hat{X} by declaring $U \subseteq \hat{X}$ to be open if either

- 1. $\infty \notin U$ and $U \in \mathcal{T}_X$ or
- 2. $\infty \in U$ and $X U$ is a closed, compact subset of X.

The new space $\{\hat{X}, \hat{\mathcal{T}}\}$ is called the one point compactification of X.

Theorem 7.25. $\{\hat{X}, \hat{\mathcal{T}}\}$ is a topological space.

Proof. Prove.

Theorem 7.26. Endow X with the subspace topology it inherits from X . This topology coincides with the original topology $\mathcal T$ on X .

 \Box

Proof. Do the opposite of disprove. \Box

Theorem 7.27. Given any space X, the one point compactification \hat{X} is compact.

Proof. Prove. \Box